Wind turbine wake models' evaluation for different downstream locations

Author:

Triantafyllou PanagiotisORCID,Kaldellis John K.

Abstract

The land use limitations, especially for onshore applications, have led modern Wind Turbines (WTs) to be aggregated in wind parks under the scope of minimizing the necessary area required. Within this framework, the trustworthy prediction of the wind speed deficiency downstream the WTs' hub (known also as the “wake effect”) and the meticulous wind park micrositing are of uppermost importance for the optimized WTs siting across the available land area. In this context, substantial effort has been made by the academic and research community, contributing to the deployment of several analytical, numerical and semi-empirical wake models, attempting to estimate the wind speed values at different locations downstream a WT. The accuracy of several semi-empirical and analytical wake models, serving also as the basis for pertinent commercial software development, is investigated in the present work, by comparing their outcome with experimental data from a past research work that concerns the wake flow. The dimensionless streamwise distance (known also with the term “downstream distance”) from the WT's hub is used as benchmark in order to categorize and evaluate the calculation results. A dedicated comparison between the wind speed cases investigated is conducted, striving to properly assess the wake models' prediction accuracy. The notable findings obtained for the wake models examined designate the requirement for subsequent research to enlighten the wake effect dynamic behavior.

Publisher

EDP Sciences

Subject

General Earth and Planetary Sciences,General Engineering,General Environmental Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Progress on Offshore Wind Farm Dynamic Wake Management for Energy;Journal of Marine Science and Engineering;2022-09-30

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3