Paraffin As a Phase Change Material to Improve Building Performance: An Overview of Applications and Thermal Conductivity Enhancement Techniques

Author:

Al-Yasiri QudamaORCID,Szabó MártaORCID

Abstract

In recent years, phase change materials (PCMs) have increasingly received attention in different thermal energy storage and management fields. In the building sector, paraffin as a phase change material (PPCM) has been introduced as an efficient PCM incorporated in a building envelope, which showed remarkable results. However, the poor thermal conductivity of PPCM is still the topmost drawback in experimental and numerical investigations. In this paper, a general assessment of paraffins, their common uses and applications, have been presented with a particular focus on their potential in building envelope applications. Moreover, the general and desired properties of PPCM are highlighted and evaluated. The primary practical limitation of PPCM of poor thermal conductivity and their effect on PPCM performance is presented and discussed. Correspondingly, the popular techniques applied to improve the poor thermal conductivity are presented and discussed in four categories: the dispersion of nanoparticles, expanded graphite, metallic foam, and extended surfaces technique (fins). All in all, the analysed research works indicated that PPCM based building envelope applications could remarkably improve the thermal performance of buildings in terms of thermal load reduction, energy-saving and thermal comfort. Furthermore, the adoption of enhancement techniques is essential to improve the thermal performance of PPCM in building applications for better utilisation. This review provides a clear vision for the newcomers and interested parties about the main application aspects of PPCM in the building sector for further investigations towards technology commercialisation.

Publisher

EDP Sciences

Subject

General Earth and Planetary Sciences,General Engineering,General Environmental Science

Reference129 articles.

1. IEA, The Future of Cooling: Opportunities for Energy-Efficient Air Conditioning (Internal Energy Agency, 2018)

2. Al-Yasiri Q., Géczi G., Global warming potential: causes and consequences, Acad. Lett. 3202 (2021)

3. IEA, CO2 Emissions from Fuel Combustion (International Energy Agency, 2020)

4. An overview of thermal energy storage systems

5. Experimental and Numerical Thermal Properties Investigation of Cement-Based Materials Modified with PCM for Building Construction Use

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3