Author:
Funke Benedikt,Schmisser Émeline
Abstract
In the present article, we investigate nonparametric estimation of the unknown drift function b in an integrated Lévy driven jump diffusion model. Our aim will be to estimate the drift on a compact set based on a high-frequency data sample.
Instead of observing the jump diffusion process V itself, we observe a discrete and high-frequent sample of the integrated process
Xt := ∫0t Vsds
Based on the available observations of Xt, we will construct an adaptive penalized least-squares estimate in order to compute an adaptive estimator of the corresponding drift function b. Under appropriate assumptions, we will bound the L2-risk of our proposed estimator. Moreover, we study the behavior of the proposed estimator in various Monte Carlo simulation setups.
Subject
Statistics and Probability
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献