3D convolutional and recurrent neural networks for reactor perturbation unfolding and anomaly detection

Author:

Durrant Aiden,Leontidis GeorgiosORCID,Kollias Stefanos

Abstract

With Europe's ageing fleet of nuclear reactors operating closer to their safety limits, the monitoring of such reactors through complex models has become of great interest to maintain a high level of availability and safety. Therefore, we propose an extended Deep Learning framework as part of the CORTEX Horizon 2020 EU project for the unfolding of reactor transfer functions from induced neutron noise sources. The unfolding allows for the identification and localisation of reactor core perturbation sources from neutron detector readings in Pressurised Water Reactors. A 3D Convolutional Neural Network (3D-CNN) and Long Short-Term Memory (LSTM) Recurrent Neural Network (RNN) have been presented, each to study the signals presented in frequency and time domain respectively. The proposed approach achieves state-of-the-art results with the classification of perturbation type in the frequency domain reaching 99.89% accuracy and localisation of the classified perturbation source being regressed to 0.2902 Mean Absolute Error (MAE).

Funder

H2020 Euratom

Publisher

EDP Sciences

Reference20 articles.

1. Demazière C. et al., Overview of the CORTEX project, in Proc. Int. Conf. Physics of Reactors − Reactor Physics paving the way towards more efficient systems (PHYSOR2018), Cancun, Mexico, April 22-26, 2018 (2018)

2. Rolnick D. et al., Tackling Climate Change with Machine Learning, arXiv:1906.05433 (2019)

3. NB-CNN: Deep Learning-Based Crack Detection Using Convolutional Neural Network and Naïve Bayes Data Fusion

4. Design of comprehensive diagnosis system in nuclear power plant

5. Deep rectifier neural network applied to the accident identification problem in a PWR nuclear power plant

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3