Abstract
With Europe's ageing fleet of nuclear reactors operating closer to their safety limits, the monitoring of such reactors through complex models has become of great interest to maintain a high level of availability and safety. Therefore, we propose an extended Deep Learning framework as part of the CORTEX Horizon 2020 EU project for the unfolding of reactor transfer functions from induced neutron noise sources. The unfolding allows for the identification and localisation of reactor core perturbation sources from neutron detector readings in Pressurised Water Reactors. A 3D Convolutional Neural Network (3D-CNN) and Long Short-Term Memory (LSTM) Recurrent Neural Network (RNN) have been presented, each to study the signals presented in frequency and time domain respectively. The proposed approach achieves state-of-the-art results with the classification of perturbation type in the frequency domain reaching 99.89% accuracy and localisation of the classified perturbation source being regressed to 0.2902 Mean Absolute Error (MAE).
Reference20 articles.
1. Demazière C. et al., Overview of the CORTEX project, in Proc. Int. Conf. Physics of Reactors − Reactor Physics paving the way towards more efficient systems (PHYSOR2018), Cancun, Mexico, April 22-26, 2018 (2018)
2. Rolnick D. et al., Tackling Climate Change with Machine Learning, arXiv:1906.05433 (2019)
3. NB-CNN: Deep Learning-Based Crack Detection Using Convolutional Neural Network and Naïve Bayes Data Fusion
4. Design of comprehensive diagnosis system in nuclear power plant
5. Deep rectifier neural network applied to the accident identification problem in a PWR nuclear power plant
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献