Advanced numerical simulation and modelling for reactor safety − contributions from the CORTEX, HPMC, McSAFE and NURESAFE projects

Author:

Demazière ChristopheORCID,Sanchez-Espinoza Victor HugoORCID,Chanaron Bruno

Abstract

Predictive modelling capabilities have long represented one of the pillars of reactor safety. In this paper, an account of some projects funded by the European Commission within the seventh Framework Program (HPMC and NURESAFE projects) and Horizon 2020 Program (CORTEX and McSAFE) is given. Such projects aim at, among others, developing improved solution strategies for the modelling of neutronics, thermal-hydraulics, and/or thermo-mechanics during normal operation, reactor transients and/or situations involving stationary perturbations. Although the different projects have different focus areas, they all capitalize on the most recent advancements in deterministic and probabilistic neutron transport, as well as in DNS, LES, CFD and macroscopic thermal-hydraulics modelling. The goal of the simulation strategies is to model complex multi-physics and multi-scale phenomena specific to nuclear reactors. The use of machine learning combined with such advanced simulation tools is also demonstrated to be capable of providing useful information for the detection of anomalies during operation.

Publisher

EDP Sciences

Reference28 articles.

1. Demazière C. et al., Overview of the CORTEX project, in Proceedings of the International Conference on the Physics of Reactors – Reactor Physics paving the way towards more efficient systems (PHYSOR2018), Cancun, Mexico, April 22–26, 2018

2. Sanchez V. et al., High performance Monte Carlo computing projects: from HPCM to McSAFE, in NUGENIA Forum, Ljubljana, Slovenia, April 14, 2015

3. Mercatali L. et al., McSAFE projects highlights, in International Multi Physics Validation Workshop, North Carolina State University, USA, June 2017

4. Deville E., Perdu F., Documentation of the Interface for Code Coupling: ICOCO, CEA, Paris, 2012

5. Advanced multi-physics simulation for reactor safety in the framework of the NURESAFE project

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3