Author:
Estienne Magali,Fallot Muriel,Giot Lydie,Le Meur Loïc,Porta Amanda
Abstract
Three observables of interest for present and future reactors depend on the β decay data of the fission products: the reactor decay heat, antineutrinos from reactors and delayed neutron emission. Concerning the decay heat, significant discrepancies still exist between summation calculations in − their two main ingredients: the decay data and the fission yields − performed using the most recent evaluated databases available. It has been recently shown that the associated uncertainties are dominated by the ones on the decay data. But the results subtantially differ taking into account or not the correlations between the fission products. So far the uncertainty propagation does not include as well systematic effects on nuclear data such as the Pandemonium effect which impacts a large number of nuclei contributing to the decay heat. The list of nuclei deserving new TAGS measurements has been updated recently in the frame of IAEA working groups. The issues listed above impact in the same way the predicted energy spectra of the antineutrinos from reactors computed with the summation method, the interest of which has been recently reinforced by the Daya Bay latest publication. Nuclear data should definitely contribute to refine and better control these calculations. Lastly, a lot of nuclear data related to delayed neutrons are missing in nuclear databases. Despite the progresses already done these last years with new measurements now requiring to be included in evaluated databases, the experimental efforts which still need to be done are significant. These different issues will be addressed here before to comment on recent experimental results and on their impacts on the quoted observables. Some perspectives will also be presented. Solving the issues listed above will require to bring together experimental, simulation, evaluation and theoretical activities.