PV generation forecasting utilizing a classification-only approach

Author:

Theocharides SpyrosORCID,Makrides George,Georghiou George E.

Abstract

The increasing use of photovoltaic (PV) systems in electricity infrastructure poses new reliability challenges, as the supply of solar energy is primarily dependent on weather conditions. Consequently, to mitigate the issue, enhanced day-ahead PV production forecasts can be obtained by employing advanced machine learning techniques and reducing the uncertainty of solar irradiance predictions through statistical processing. The objective of this study was to present a methodology for accurately forecasting day-ahead PV production using novel machine learning techniques and a classification-only forecasting approach. Specifically, the central component of the proposed method is a classifier model based on an Extreme Gradient Boosting (XGBoost) ensemble algorithm that classifies the respective daily 30-min profiles of the forecasted global horizontal irradiance (GHI), the measured incident irradiance (Gi), and the AC power (PAC) into a predetermined number of classes. The formed classifier model was used as a dictionary to designate the newly arrived forecasted GHI to a particular class and ultimately identify the corresponding forecasted PAC. The results demonstrated that the proposed forecasting solution provided forecasts with a daily normalised root mean square error (nRMSE) of 8.20% and a mean absolute percentage error (MAPE) of 6.91% over the test set period of one year, while the model's reproducibility was also evaluated and confirmed. Additionally, a comprehensive evaluation based on clear-sky index categories revealed that the model's performance was notably accurate on clear-sky days, while maintaining acceptable accuracy levels on moderate and overcast days. These findings underscore the versatility and robustness of the proposed methodology in handling diverse weather conditions and hold promise for improved PV production forecasts.

Funder

Horizon 2020 Framework Programme

Publisher

EDP Sciences

Reference36 articles.

1. IEA, Electricity security in tomorrow's power systems, 2020. https://www.iea.org/articles/electricity-security-in-tomorrow-s-power-systems

2. IEA, Renewables 2019: market analysis and forecast from 2019 to 2024, 2020. https://www.iea.org/reports/renewables-2019

3. IEA, Introduction to system integration of renewables: decarbonising while meeting growing demand, 2020. 2020. https://www.iea.org/reports/introduction-to-system-integration-of-renewables

4. Mahoor M., Majzoobi A., Khodaei A., Distribution asset management through coordinated microgrid scheduling, IET Smart Grid. 1, 159 (2018)

5. Sadeghian H., Wang Z., A novel impact-assessment framework for distributed PV installations in low-voltage secondary networks, Renew. Energy 147, 2179 (2020)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3