Detection of shading for short-term power forecasting of photovoltaic systems using machine learning techniques

Author:

Kappler TimORCID,Starosta Anna Sina,Munzke Nina,Schwarz Bernhard,Hiller Marc

Abstract

This paper presents a machine learning based solar power forecast method that can take into account shading related fluctuations. The generated PV power is difficult to predict because there are various fluctuations. Such fluctuations can be weather related when a cloud passes over the array. But they can also occur due to shading caused by stationary obstacles, and this paper addresses this form of shading. In this work an approach is presented that improves the forecast under such fluctuations caused by shading. A correction of the prediction could successfully reduce error due to shading. The evaluation of the model is based on five sets of recorded shading data, where shading resulted from intentionally placed structures. The correction uses internal inverter data and irradiance values of the previous day to perform the correction and was able to reduce the RMSE of four 10 kWp systems with different orientation and tilt angle under shading and thus improve the prediction accuracy by up to 40%. The model can detect how intense the shading is and correct the forecast by itself.

Funder

Federal Ministry for Economic Affairs and Climate Action

Publisher

EDP Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3