Floating photovoltaics: modelled and experimental operating temperatures and the impact of wind speed and direction

Author:

Nysted Vilde Stueland,Lindholm DagORCID,Selj Josefine,Kjeldstad Torunn

Abstract

Floating photovoltaics (FPV) is rapidly emerging as a promising alternative to ground-mounted PV (GPV) where available land area is scarce or expensive. Improved cooling has often been reported as a benefit of FPV, as cell temperature is an important parameter for the performance of a PV system. However, more recent literature shows that the cooling effect depends strongly on FPV technology and that it is not always superior to that of open rack GPV systems. There is still a need for more information on how to estimate cell temperatures for FPV systems, and how to consider the influence of various environmental factors such as wind speed and direction. Operating cell temperature may be estimated with the PVsyst model, where heat loss coefficients (U-values) denote the heat transfer capabilities of the PV system. In this work, cell temperatures and U-values for a small footprint FPV system with east-west orientation and a 15° tilt located in Sri Lanka are studied using both module temperature measurements and computational fluid dynamics (CFD) modelling. CFD modelling allows for investigating the influence of both wind speed and direction on cell temperatures, as well as to look at the distribution of cell temperatures within the system under different wind conditions. Calculations based on measurements give Uc = 22.6 W/m2K and Uv = 4.9 Ws/m3K and correlate well with CFD calculations. We also show that wind direction, system configuration and sensor placement influence the estimated U-values, complicating the use of tabulated values for any given technology.

Funder

Norges Forskningsråd

Publisher

EDP Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3