A fully coupled opto-electro-thermal model to investigate silicon solar cells under real operating conditions

Author:

Dumoulin JérémyORCID,Drouard EmmanuelORCID,Amara Mohamed

Abstract

In this work, a fully coupled opto-electro-thermal model for crystalline silicon solar cells is presented. Based on a detailed set of material properties, the developed model allows us to predict and analyse the solar cell behaviour under real operating conditions in a standalone framework. The results show the potential of our model to study the influence of the cell design on its real operating performance, thus giving a new opportunity for silicon solar cell optimisation. Specifically, the doping level is found to impact both the operating temperature and the temperature coefficient, showing that two cells with the same power conversion efficiency in standard test conditions can have a very different efficiency under real operating conditions. We also demonstrate the model capability to assess in detail the influence of environmental conditions, such as the solar spectrum, which also impacts the temperature coefficient. As the latter is not required by our material-based approach but is a simulation output, this work opens the way to more reliable outdoor prediction. Moreover, the various perspectives and challenges associated with the proposed detailed multiphysics simulation of solar cells are discussed, providing important guidelines for future studies.

Publisher

EDP Sciences

Subject

Electrical and Electronic Engineering,Condensed Matter Physics,Renewable Energy, Sustainability and the Environment,Electronic, Optical and Magnetic Materials

Reference47 articles.

1. Impact of radiative-heat transfer on photovoltaic module temperature

2. Degradations of silicon photovoltaic modules: A literature review

3. Virtuani A., Pavanello D., Friesen G., Overview of temperature coefficients of different thin film photovoltaic technologies, in Proc. 25th Eur. Photovoltaic Sol. Energy Conf. Exhib. (2010), pp. 4248–4252

4. The impact of silicon solar cell architecture and cell interconnection on energy yield in hot & sunny climates

5. Heat generation and mitigation in silicon solar cells and modules

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3