Impact of organic particles from wafer handling equipment on silicon heterojunction pseudo-efficiency

Author:

Fischer Andreas,Vulcanean Ioan Voicu,Pingel Sebastian,Steinmetz Anamaria

Abstract

Within this paper a systematic analysis of particle transfer onto SHJ Solar cell precursors by handling with suction cups and the impact on the pseudo efficiency is presented. The study establishes a correlation between particle area coverage and a resulting loss of pseudo solar cell parameters. The analysis was carried out on one hand by means of SEM measurements at the contact points between suction cup and wafer to quantify particle transfer and on the other hand by means of suns photoluminescence imaging measurements to evaluate the resulting losses. It is shown that the choice of contact material and the wafer temperature have a significant influence on the transferred particle number, their size and the resulting particle area coverage. A local electrical defect was observed at these particle-rich spots, which also affected a larger area around this insufficiently passivated region. This had a significant negative effect on the pseudo efficiency, which is more pronounced for increasing particle area coverage. If the particle density is increased by 0.1% within an area of 800 mm2, the pseudo efficiency in this area decreases by almost 1.2%Relative. The correlation found can be used to predict an efficiency loss using standard photoluminescence images.

Publisher

EDP Sciences

Subject

Electrical and Electronic Engineering,Condensed Matter Physics,Renewable Energy, Sustainability and the Environment,Electronic, Optical and Magnetic Materials

Reference17 articles.

1. Haase J.J., in: Proceedings of the IEEE 4th World Conference on Photovoltaic Energy Conversion (Waikoloa, 2006), p. 1256

2. Schilp, Ph.D. M. thesis, TU Munich, 2006

3. Grubba, Ph.D A.. thesis, University of Dortmund, 2002

4. VDMA, International Technology Roadmap for Photovoltaic (ITRPV), 13th Edition, (VDMA, 2022)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3