Abstract
Let τn be a random tree distributed as a Galton-Watson tree with geometric offspring distribution conditioned on {Zn = an} where Zn is the size of the nth generation and (an, n ∈ ℕ*) is a deterministic positive sequence. We study the local limit of these trees τn as n →∞ and observe three distinct regimes: if (an, n ∈ ℕ*) grows slowly, the limit consists in an infinite spine decorated with finite trees (which corresponds to the size-biased tree for critical or subcritical offspring distributions), in an intermediate regime, the limiting tree is composed of an infinite skeleton (that does not satisfy the branching property) still decorated with finite trees and, if the sequence (an, n ∈ ℕ*) increases rapidly, a condensation phenomenon appears and the root of the limiting tree has an infinite number of offspring.
Subject
Statistics and Probability
Reference10 articles.
1. Athreya K. and
Ney P., Branching processes.
Die Grundlehren der mathematischen Wissenschaften, Band 196.
Springer-Verlag,
New York-Heidelberg
(1972).
2. Simply generated trees, conditioned Galton–Watson trees, random allocations and condensation
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献