Limit theorems for quadratic forms and related quantities of discretely sampled continuous-time moving averages

Author:

Nielsen Mikkel SlotORCID,Pedersen Jan

Abstract

The limiting behavior of Toeplitz type quadratic forms of stationary processes has received much attention through decades, particularly due to its importance in statistical estimation of the spectrum. In the present paper, we study such quantities in the case where the stationary process is a discretely sampled continuous-time moving average driven by a Lévy process. We obtain sufficient conditions, in terms of the kernel of the moving average and the coefficients of the quadratic form, ensuring that the centered and adequately normalized version of the quadratic form converges weakly to a Gaussian limit.

Funder

Det Frie Forskningsråd

Publisher

EDP Sciences

Subject

Statistics and Probability

Reference25 articles.

1. On bilinear forms in Gaussian random variables and Toeplitz matrices

2. Limit theorems for quadratic forms of Lévy-driven continuous-time linear processes

3. Basse-O’Connor A., Nielsen M.S., Pedersen J. and Rohde V., A continuous-time framework for ARMA processes. Preprint arXiv:1704.08574v1 (2018).

4. Beran J., Feng Y., Ghosh S. and Kulik R., Long-Memory Processes. Springer, Berlin (2016).

5. On the sample autocovariance of a Lévy driven moving average process when sampled at a renewal sequence

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3