Infinite multidimensional scaling for metric measure spaces

Author:

Kroshnin AlexeyORCID,Stepanov EugeneORCID,Trevisan Dario

Abstract

For a given metric measure space (X, d, μ) we consider finite samples of points, calculate the matrix of distances between them and then reconstruct the points in some finite-dimensional space using the multidimensional scaling (MDS) algorithm with this distance matrix as an input. We show that this procedure gives a natural limit as the number of points in the samples grows to infinity and the density of points approaches the measure μ. This limit can be viewed as “infinite MDS” embedding of the original space, now not anymore into a finite-dimensional space but rather into an infinitedimensional Hilbert space. We further show that this embedding is stable with respect to the natural convergence of metric measure spaces. However, contrary to what is usually believed in applications, we show that in many cases it does not preserve distances, nor is even bi-Lipschitz, but may provide snowflake (Assouad-type) embeddings of the original space to a Hilbert space (this is, for instance, the case of a sphere and a flat torus equipped with their geodesic distances).

Funder

RSF

University of Pisa

Publisher

EDP Sciences

Subject

Computational Mathematics,Control and Optimization,Control and Systems Engineering

Reference26 articles.

1. Multidimensional scaling on metric measure spaces

2. Ambrosio L., Gigli N. and Savare G., Gradient Flows: In Metric Spaces and in the Space of Probability Measures. Springer Science & Business Media (2008).

3. Embedding of RCD⁎(K,N) spaces in L2 via eigenfunctions

4. Ambrosio L. and Tilli P., Topics on analysis in metric spaces, volume 25 of Oxford Lecture Series in Mathematics and its Applications. Oxford University Press, Oxford (2004).

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Classical multidimensional scaling on metric measure spaces;Information and Inference: A Journal of the IMA;2024-04-01

2. Reconstruction of manifold embeddings into Euclidean spaces via intrinsic distances;ESAIM: Control, Optimisation and Calculus of Variations;2024

3. t-SNE Highlights Phylogenetic and Temporal Patterns of SARS-CoV-2 Spike and Nucleocapsid Protein Evolution;Bioinformatics Research and Applications;2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3