Convergence rates for energies of interacting particles whose distribution spreads out as their number increases

Author:

van Meurs PatrickORCID,Tanaka Ken'ichiro

Abstract

We consider a class of particle systems which appear in various applications such as approximation theory, plasticity, potential theory and space-filling designs. The positions of the particles on the real line are described as a global minimum of an interaction energy, which consists of a nonlocal, repulsive interaction part and a confining part. Motivated by the applications, we cover non-standard scenarios in which the confining potential weakens as the number of particles increases. This results in a large area over which the particles spread out. Our aim is to approximate the particle interaction energy by a corresponding continuum interacting energy. Our main results are bounds on the corresponding energy difference and on the difference between the related potential values. We demonstrate that these bounds are useful to problems in approximation theory and plasticity. The proof of these bounds relies on convexity assumptions on the interaction and confining potentials. It combines recent advances in the literature with a new upper bound on the minimizer of the continuum interaction energy.

Funder

Japan Society for the Promotion of Science

Publisher

EDP Sciences

Subject

Computational Mathematics,Control and Optimization,Control and Systems Engineering

Reference12 articles.

1. Boundary-layer analysis of a pile-up of walls of edge dislocations at a lock

2. Asymptotic Behaviour of a Pile-Up of Infinite Walls of Edge Dislocations

3. Hayakawa S. and Tanaka K., Convergence analysis of approximation formulas for analytic functions via duality for potential energy minimization. Preprint arXiv:1906.03133 (2019).

4. Quantitative Estimate of the Continuum Approximations of Interacting Particle Systems in One Dimension

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3