Regularization for Wasserstein distributionally robust optimization

Author:

Azizian Waïss,Iutzeler Franck,Malick Jérôme

Abstract

Optimal transport has recently proved to be a useful tool in various machine learning applications needing comparisons of probability measures. Among these, applications of distributionally robust optimization naturally involve Wasserstein distances in their models of uncertainty, capturing data shifts or worst-case scenarios. Inspired by the success of the regularization of Wasserstein distances in optimal transport, we study in this paper the regularization of Wasserstein distributionally robust optimization. First, we derive a general strong duality result of regularized Wasserstein distributionally robust problems. Second, we refine this duality result in the case of entropic regularization and provide an approximation result when the regularization parameters vanish.

Funder

Agence Nationale de la Recherche

Publisher

EDP Sciences

Subject

Computational Mathematics,Control and Optimization,Control and Systems Engineering

Reference41 articles.

1. An Y. and Gao R., Generalization bounds for (Wasserstein) robust Optimization. Adv. Neural Inform. Process. Syst. 34 (2021).

2. Robust Wasserstein profile inference and applications to machine learning

3. Quantifying Distributional Model Risk via Optimal Transport

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3