Abstract
This paper investigates the optimal distribution of hard and soft material on elastic plates. In the class of isometric deformations stationary points of a Kirchhoff plate functional with incorporated material hardness function are investigated and a compliance cost functional is taken into account. Under symmetry assumptions on the material distribution and the load it is shown that cylindrical solutions are stationary points. Furthermore, it is demonstrated that the optimal design of cylindrically deforming, clamped rectangular plates is non trivial, i.e. with a material distribution which is not just depending on one axial direction on the plate. Analytical results are complemented with numerical optimization results using a suitable finite element discretization and a phase field description of the material phases. Finally, using numerical methods an outlook on the optimal design of non isometrically deforming plates and shells is given.
Funder
Deutsche Forschungsgemeinschaft
Subject
Computational Mathematics,Control and Optimization,Control and Systems Engineering
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献