Author:
Zhou Yue,Feng Xinwei,Yong Jiongmin
Abstract
Deterministic optimal impulse control problem with terminal state constraint is considered. Due to the appearance of the terminal state constraint, the value function might be discontinuous in general. The main contribution of this paper is the introduction of an intrinsic condition under which the value function is proved to be continuous. Then by a Bellman dynamic programming principle, the corresponding Hamilton-Jacobi-Bellman type quasi-variational inequality (QVI, for short) is derived. The value function is proved to be a viscosity solution to such a QVI. The issue of whether the value function is characterized as the unique viscosity solution to this QVI is carefully addressed and the answer is left open challengingly.
Subject
Computational Mathematics,Control and Optimization,Control and Systems Engineering