The isoperimetric problemviadirect method in noncompact metric measure spaces with lower Ricci bounds

Author:

Antonelli Gioacchino,Nardulli Stefano,Pozzetta Marco

Abstract

We establish a structure theorem for minimizing sequences for the isoperimetric problem on noncompact RCD(K, N) spaces (X, d, ℋN). Under the sole (necessary) assumption that the measure of unit balls is uniformly bounded away from zero, we prove that the limit of such a sequence is identified by a finite collection of isoperimetric regions possibly contained in pointed Gromov-Hausdorff limits of the ambient spaceXalong diverging sequences of points. The number of such regions is bounded linearly in terms of the measure of the minimizing sequence. The result follows from a new generalized compactness theorem, which identifies the limit of a sequence of setsEiXiwith uniformly bounded measure and perimeter, where (Xi,di, ℋN) is an arbitrary sequence of RCD(K,N) spaces. An abstract criterion for a minimizing sequence to converge without losing mass at infinity to an isoperimetric set is also discussed. The latter criterion is new also for smooth Riemannian spaces.

Funder

European Research Council

JP-FAPESP

Publisher

EDP Sciences

Subject

Computational Mathematics,Control and Optimization,Control and Systems Engineering

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Nonexistence of isoperimetric sets in spaces of positive curvature;Journal für die reine und angewandte Mathematik (Crelles Journal);2024-05-30

2. Stability of Sobolev inequalities on Riemannian manifolds with Ricci curvature lower bounds;Advances in Mathematics;2024-03

3. Asymptotic isoperimetry on non collapsed spaces with lower Ricci bounds;Mathematische Annalen;2023-08-04

4. The Isoperimetric Profile of Non-compact Manifolds;Isoperimetric Inequalities in Riemannian Manifolds;2023

5. The isoperimetric problem on Riemannian manifolds via Gromov–Hausdorff asymptotic analysis;Communications in Contemporary Mathematics;2022-11-19

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3