Abstract
This paper deals with second-order optimality conditions for a quasilinear elliptic control problem with a nonlinear coefficient in the principal part that is finitely PC2 (continuous and C2 apart from finitely many points). We prove that the control-to-state operator is continuously differentiable even though the nonlinear coefficient is non-smooth. This enables us to establish “no-gap” second-order necessary and sufficient optimality conditions in terms of an abstract curvature functional, i.e., for which the sufficient condition only differs from the necessary one in the fact that the inequality is strict. A condition that is equivalent to the second-order sufficient optimality condition and could be useful for error estimates in, e.g., finite element discretizations is also provided.
Funder
Deutsche Forschungsgemeinschaft
Subject
Computational Mathematics,Control and Optimization,Control and Systems Engineering
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献