Long time dynamics and upper semi-continuity of attractors for piezoelectric beams with nonlinear boundary feedback

Author:

Freitas M.M.,Özer A.Ö.ORCID,Ramos A.J.A.

Abstract

A system of boundary-controlled piezoelectric beam equations, accounting for the interactions between mechanical vibrations and the fully-dynamic electromagnetic fields, is considered. Even though electrostatic and quasi-static electromagnetic field approximations of Maxwell’s equations are sufficient for most models of piezoelectric systems, where the magnetic permeability is completely discarded, the PDE model considered here retains the pronounced wave behavior of electromagnetic fields to accurately describe the dynamics for the most piezoelectric acoustic devices. It is also crucial to investigate whether the closed-loop dynamics of the fully-dynamic piezoelectric beam equations, with nonlinear state feedback and nonlinear external sources, is close to the one described by the electrostatic/quasi-static equations, when the magnetic permeability μ is small. Therefore, the asymptotic behavior is analyzed for the fully-dynamic model at first. The existence of global attractors with finite fractal dimension and the existence of exponential attractors are proved. Finally, the upper-semicontinuity of attractors with respect to magnetic permeability to the ones of the electrostatic/quasi-static beam equations is shown.

Funder

The second author's work is supported by the National Science Foundation under Cooperative Agreement

M. M. Freitas thanks the CNPq for financial support

A. J. A. Ramos thanks the CNPq for financial support

Publisher

EDP Sciences

Subject

Computational Mathematics,Control and Optimization,Control and Systems Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3