Convergence of quasi-Newton methods for solving constrained generalized equations

Author:

Andreani Roberto,Carvalho Rui M.,Secchin Leonardo D.,Silva Gilson N.

Abstract

In this paper, we focus on quasi-Newton methods to solve constrained generalized equations. As is well-known, this problem was firstly studied by Robinson and Josephy in the 70’s. Since then, it has been extensively studied by many other researchers, specially Dontchev and Rockafellar. Here, we propose two Broyden-type quasi-Newton approaches to dealing with constrained generalized equations, one that requires the exact resolution of the subproblems, and other that allows inexactness, which is closer to numerical reality. In both cases, projections onto the feasible set are also inexact. The local convergence of general quasi-Newton approaches is established under a bounded deterioration of the update matrix and Lipschitz continuity hypotheses. In particular, we prove that a general scheme converges linearly to the solution under suitable assumptions. Furthermore, when a Broyden-type update rule is used, the convergence is superlinearly. Some numerical examples illustrate the applicability of the proposed methods.

Funder

FAPESP

CNPq

PRONEX - CNPq/FAPERJ

Publisher

EDP Sciences

Subject

Computational Mathematics,Control and Optimization,Control and Systems Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3