Author:
Vanspranghe Nicolas,Prieur Christophe,Ferrante Francesco
Abstract
In this paper, we consider the problem of nonlinear (in particular, saturated) stabilization of the high-dimensional wave equation with Dirichlet boundary conditions. The wave dynamics are subject to a dissipative nonlinear velocity feedback and generate a strongly continuous semigroup of contractions on the optimal energy space L 2 (Ω) × H −1 (Ω). It is first proved that any solution to the closed-loop equations converges to zero in the aforementioned topology. Secondly, under the condition that the feedback nonlinearity has linear growth around zero, polynomial energy decay rates are established for solutions with smooth initial data. This constitutes new Dirichlet counterparts to well-known results pertaining to nonlinear stabilization in H 1 (Ω) × L 2 (Ω) of the wave equation with Neumann boundary conditions.
Subject
Computational Mathematics,Control and Optimization,Control and Systems Engineering
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献