Abstract
We consider an abstract second order non-autonomous evolution equation in a Hilbert space H : u″ + Au + γ(t)u′ + f(u) = 0, where A is a self-adjoint and nonnegative operator on H, f is a conservative H-valued function with polynomial growth (not necessarily to be monotone), and γ(t)u′ is a time-dependent damping term. How exactly the decay of the energy is affected by the damping coefficient γ(t) and the exponent associated with the nonlinear term f? There seems to be little development on the study of such problems, with regard to non-autonomous equations, even for strongly positive operator A. By an idea of asymptotic rate-sharpening (among others), we obtain the optimal decay rate of the energy of the non-autonomous evolution equation in terms of γ(t) and f. As a byproduct, we show the optimality of the energy decay rates obtained previously in the literature when f is a monotone operator.
Funder
National Natural Science Foundation of China
Subject
Computational Mathematics,Control and Optimization,Control and Systems Engineering
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献