Author:
Cirant Marco,Porretta Alessio
Abstract
We consider mean field game systems in time-horizon (0, T), where the individual cost functional depends locally on the density distribution of the agents, and the Hamiltonian is locally uniformly convex. We show that, even if the coupling cost functions are mildly non-monotone, then the system is still well posed due to the effect of individual noise. The rate of anti-monotonicity (i.e. the aggregation rate of the cost functions) which can be afforded depends on the intensity of the diffusion and on global bounds of solutions. We give applications to either the case of globally Lipschitz Hamiltonians or the case of quadratic Hamiltonians and couplings having mild growth. Under similar conditions, we investigate the long time behavior of solutions and we give a complete description of the ergodic and long term properties of the system. In particular we prove: (i) the turnpike property of solutions in the finite (long) horizon (0, T), (ii) the convergence of the system from (0, T) towards (0, ∞), (iii) the vanishing discount limit of the infinite horizon problem and the long time convergence towards the ergodic stationary solution. This way we extend previous results which were known only for the case of monotone and smoothing couplings; our approach is self-contained and does not need the use of the linearized system or of the master equation.
Subject
Computational Mathematics,Control and Optimization,Control and Systems Engineering
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献