Abstract
Approximate necessary optimality conditions in terms of Frechet subgradients and normals for a rather general optimization problem with a potentially non-Lipschitzian objective function are established with the aid of Ekeland’s variational principle, the fuzzy Frechet subdifferential sum rule, and a novel notion of lower semicontinuity relative to a set-valued mapping or set. Feasible points satisfying these optimality conditions are referred to as approximately stationary. As applications, we derive a new general version of the extremal principle. Furthermore, we study approximate stationarity conditions for an optimization problem with a composite objective function and geometric constraints, a qualification condition guaranteeing that approximately stationary points of such a problem are M-stationary, and a multiplier-penalty-method which naturally computes approximately stationary points of the underlying problem. Finally, necessary optimality conditions for an optimal control problem with a non-Lipschitzian sparsity-promoting term in the objective function are established.
Funder
entre of Excellence in Cognition and its Disorders, Australian Research Council
Deutsche Forschungsgemeinschaft
H2020 European Research Council
Consejo Nacional de Innovación, Ciencia y Tecnología
Subject
Computational Mathematics,Control and Optimization,Control and Systems Engineering
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献