Normal forms for the endpoint map near nice singular curves for rank-two distributions

Author:

Agrachev Andrei A.,Boarotto FrancescoORCID

Abstract

Given a rank-two sub-Riemannian structure (M, Δ) and a point x0 ∈ M, a singular curve is a critical point of the endpoint map F : γ ↦ γ (1) defined on the space of horizontal curves starting at x0. The typical least degenerate singular curves of these structures are called regular singular curves; they are nice if their endpoint is not conjugate along γ. The main goal of this paper is to show that locally around a nice singular curve γ, once we choose a suitable topology on the control space we can find a normal form for the endpoint map, in which F writes essentially as a sum of a linear map and a quadratic form. This is a preparation for a forthcoming generalization of the Morse theory to rank-two sub-Riemannian structures.

Publisher

EDP Sciences

Subject

Computational Mathematics,Control and Optimization,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3