Abstract
The time evolution of a collisionless plasma is modeled by the Vlasov-Maxwell system which couples the Vlasov equation (the transport equation) with the Maxwell equations of electrodynamics. We only consider a two-dimensional version of the problem since existence of global, classical solutions of the full three-dimensional problem is not known. We add external currents to the system, in applications generated by coils, to control the plasma properly. After considering global existence of solutions to this system, differentiability of the control-to-state operator is proved. In applications, on the one hand, we want the shape of the plasma to be close to some desired shape. On the other hand, a cost term penalizing the external currents shall be as small as possible. These two aims lead to minimizing some objective function. We restrict ourselves to only such control currents that are realizable in applications. After that, we prove existence of a minimizer and deduce first order optimality conditions and the adjoint equation.
Subject
Computational Mathematics,Control and Optimization,Control and Systems Engineering
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献