A minimal time optimal control for a drone landing problem

Author:

Gazzola Filippo,Marchini Elsa M.

Abstract

We study a variant of the classical safe landing optimal control problem in aerospace engineering, introduced by Miele (1962), where the target was to land a spacecraft on the moon by minimizing the consumption of fuel. A more modern model consists in replacing the spacecraft by a hybrid gas-electric drone. Assuming that the drone has a failure and that the thrust (representing the control) can act in both vertical directions, the new target is to land safely by minimizing time, no matter of what the consumption is. In dependence of the initial data (height, velocity, and fuel), we prove that the optimal control can be of four different kinds, all being piecewise constant. Our analysis covers all possible situations, including the nonexistence of a safe landing strategy due to the lack of fuel or for heights/velocities for which also a total braking is insufficient to stop the drone.

Publisher

EDP Sciences

Subject

Computational Mathematics,Control and Optimization,Control and Systems Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Statistical linearization for robust motion planning;Systems & Control Letters;2024-07

2. Research on double camouflage encryption mechanism of QR code based on UAV landing scenario;Scientific Reports;2023-12-08

3. Optimal planetary landing with pointing and glide-slope constraints;2022 IEEE 61st Conference on Decision and Control (CDC);2022-12-06

4. Structure of optimal control for planetary landing with control and state constraints;ESAIM: Control, Optimisation and Calculus of Variations;2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3