Author:
Grüne Lars,Schaller Manuel,Schiela Anton
Abstract
We analyze the sensitivity of the extremal equations that arise from the first order necessary optimality conditions of nonlinear optimal control problems with respect to perturbations of the dynamics and of the initial data. To this end, we present an abstract implicit function approach with scaled spaces. We will apply this abstract approach to problems governed by semilinear PDEs. In that context, we prove an exponential turnpike result and show that perturbations of the extremal equation’s dynamics, e.g., discretization errors decay exponentially in time. The latter can be used for very efficient discretization schemes in a Model Predictive Controller, where only a part of the solution needs to be computed accurately. We showcase the theoretical results by means of two examples with a nonlinear heat equation on a two-dimensional domain.
Funder
Deutsche Forschungsgemeinschaft
Subject
Computational Mathematics,Control and Optimization,Control and Systems Engineering
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献