Dynamic Optimal Transport on Networks

Author:

Burger Martin,Humpert Ina,Pietschmann Jan-FrederikORCID

Abstract

We study a dynamic optimal transport problem on a network. Despite the cost for transport along the edges, an additional cost, scaled with a parameter κ, has to be paid for interchanging mass between edges and vertices. We show existence of minimisers using duality and discuss the relationship of the model to other metrics such as Fisher–Rao and the classical Wasserstein metric. Finally, we examine the limiting behaviour of the model in terms of the parameter κ.

Funder

Deutsche Forschungsgemeinschaft

Publisher

EDP Sciences

Subject

Computational Mathematics,Control and Optimization,Control and Systems Engineering

Reference30 articles.

1. Ambrosio L., Gigli N. and Savaré G., Gradient Flows in Metric Spaces and in the Space of Probability Measures, 2nd ed. Lectures in Mathematics ETH Zürich. Birkhäuser Verlag, Basel (2008).

2. Gas flow in pipeline networks

3. A computational fluid mechanics solution to the Monge-Kantorovich mass transfer problem

4. New lower semicontinuity results for nonconvex functionals defined on measures

5. A Survey on dynamical transport distances

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3