Spatiotemporal structure of narrow-barred Spanish mackerel (Scomberomorus commerson) from the Red Sea and western Indian Ocean based on otolith micro-chemistry

Author:

Sougueh Mohamed A.,Labonne Maylis,Daher Abdourahman,Ali Ahmed,Kaplan David M.

Abstract

Though the narrow-barred Spanish mackerel (Scomberomorus commerson) is considered to be migratory, the species is nevertheless thought to be locally overexploited in the northwest Indian Ocean. At the regional level, this local depletion is a major concern for food security. As the population structure and connectivity between sub-populations are poorly understood for this species, we examined the spatio-temporal dynamics of narrow-barred Spanish mackerel via elemental concentrations (P, Mg, Sr and Ba) along otolith transects using LA-ICPMS for samples from 6 sites: Egypt, Djibouti North and South, Somalia, Mozambique and South Africa. For homogeneous size class samples (70–90 cm), otolith chemical signatures immediately preceding capture were used to accurately group individuals sharing a spatial proximity and/or season of capture. Notable differences in otolith edge signatures were found among individuals from north and south of the equator and contrasting cluster compositions from nearby sites in the Gulf of Aden of individuals captured in summer versus winter. Otolith core chemistry identified two spawning chemical compositions. The first common composition was characterized by relatively high concentrations of Sr and lower concentrations of P, Ba and Mg. The second less common spawning chemical composition was particularly rich in P, Ba and Mg and corresponded primarily to individuals caught off Mozambique, Somalia and Djibouti. These results are broadly consistent on one hand with patterns of water mass circulation in the Red Sea and western Indian Ocean and on the other hand with the observed spawning seasons. Though further research using, for example, archival tagging is needed to clarify the mechanisms behind these patterns, these results reveal the potential of otolith chemistry to provide insights into the spatio-temporal dynamics of narrow-barred Spanish mackerel.

Publisher

EDP Sciences

Subject

Aquatic Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3