Abstract
This paper deals with uncomplete unambiguous automata. In this setting, we investigate the minimal length of uncompletable words. This problem is connected with a well-known conjecture formulated by A. Restivo. We introduce the notion of relatively maximal row for a suitable monoid of matrices. We show that, if M is a monoid of {0, 1}-matrices of dimension n generated by a set S, then there is a matrix of M containing a relatively maximal row which can be expressed as a product of O(n3) matrices of S. As an application, we derive some upper bound to the minimal length of an uncompletable word of an uncomplete unambiguous automaton, in the case that its transformation monoid contains a relatively maximal row which is not maximal. Finally we introduce the maximal row automaton associated with an unambiguous automaton A. It is a deterministic automaton, which is complete if and only if A is. We prove that the minimal length of the uncompletable words of A is polynomially bounded by the number of states of A and the minimal length of the uncompletable words of the associated maximal row automaton.
Subject
Computer Science Applications,General Mathematics,Software
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献