Correlation and sequential path analysis of oil yield and related characteristics in camelina under seasonal variations

Author:

Göre MerveORCID,Zeinalzadeh-Tabrizi HosseinORCID,Kurt OrhanORCID

Abstract

The objectives of the current study were to determine the usefulness of sequential path analysis in camelina to obtain information about the relationship between yield and yield components and to evaluate their relative importance in camelina oil yield under summer and winter cultivation. A split-plot design, with two varieties as the main plot and four sowing times as the subplot, was carried out over two growing seasons (2017–2019) in Samsun, Turkey. Sequential path analysis revealed that, as first-order predictors, grain yield and oil content displayed the most significant and positive direct effects on oil yield in both summer and winter cultivation. The sequential path analysis of second-order variables over the first-order variable revealed that seed number per pod and pod number explained approximately 90% of the variation of the grain yield in summer cultivation and branch number explained approximately 67% of the variation grain yield in winter cultivation. These results indicated that grain yield, as a main predictor of oil yield, had different pathways to affect oil yield in the summer and winter seasons. A higher magnitude of seed number per pod compared to pod number in this study indicated that selecting for higher grain yield can be done indirectly using plants with lower pod number and higher seed number per pod in the summer season. Moreover, branch number was the only trait that had a direct negative effect on grain yield in the winter season, indicating that plants with lower branch number should be selected for higher grain yield. Different environmental factors, including the seasonal cultivation of camelina in this study, were found to be a key factor in improving oil yield and, hence, should be considered as criteria indices in camelina breeding programs in the future.

Publisher

EDP Sciences

Subject

Agronomy and Crop Science,Biochemistry,Food Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3