A comparative analysis of the fuzzy and intuitionistic fuzzy environment for group and individual equipment replacement Models in order to achieve the optimized results

Author:

Saranya Vijaya Kumar,Murugan Shanmuga SundariORCID

Abstract

The main goal of this research is to compare group and individual replacement models based on fuzzy replacement theory and intuitionistic fuzzy replacement theory. The capital costs are assumed to be triangular fuzzy numbers, triangular intuitionistic fuzzy numbers, and trapezoidal intuitionistic fuzzy numbers, respectively. As a result, interpreting the direct relationship between volatility and ambiguity is critical. It is difficult to predict when specific equipment will unexpectedly fail. This problem can be solved by calculating the probability of failure distribution. Furthermore, the failure is assumed to occur only at the end of period t. In this situation, two types of replacement policies are used. The first is the Individual Replacement Policy, which states that if an item fails, it will be replaced immediately. The Group Replacement Policy states that all items must be replaced after a certain time period, with the option of replacing any item before the optimal time. The dimensions of the prosecution are fuzzy, and they are then assessed using mathematical and logical procedures. The fuzzy assessment criteria of the replacement model are provided as a set of outcomes, whereas the intuitionistic fuzzy replacement model has many advantages. A methodological technique is used to determine quality measurements in which fuzzy costs or values are kept without being merged into crisp values, allowing us to draw mathematical inferences in an uncertain setting. A comparison conceptualise is created for each fuzzy number, and in an uncertain environment, a comparison study on group and individual replacement was also conducted.

Publisher

EDP Sciences

Subject

Control and Optimization,Modeling and Simulation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3