Modeling and simulation of complex emergency dispatch based on BIPSO

Author:

Sun Zimei,Huang Chengning

Abstract

In emergency task scheduling, this study proposes a complex model for emergency scheduling. It is based on the particle swarm algorithm and improves upon the traditional version. Additionally, the study recommends the use of the binary particle swarm optimization algorithm (PSO). The study proposes applying the multi-objective task scheduling-particle swarm optimization algorithm (MOTS-PSO) to the complex emergency scheduling model by combining it with the multi-objective function. Compared to other algorithms, the proposed improved algorithm exhibited the lowest average number of iterations, which consistently fell within the range of 130, and achieved a 100% success rate for optimization searches on the majority of functions. When compared with other models, the proposed research model demonstrated superior performance, exhibiting the lowest total scheduling cost, total execution time, and data transfer time of 280 and 900, respectively, for the task quantity of 5000. Furthermore, the proposed model exhibited the lowest maximum execution cost for a single node, which remained within the range of 0.45S. The outcomes of the experiments demonstrate that the proposed research model adequately satisfies the requirements for complex scheduling and its simulability has been confirmed.

Funder

Study on scheduling optimization of multi-level response for multi-region epidemic prevention and control in cloud environment

Publisher

EDP Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3