Design, analysis and optimization of porous titanium alloys scaffolds by using additive manufacture

Author:

Yang Xue,Song Xiujuan,Zhang Guoliang,Xu ShuboORCID,Wang Wenming,Sun Kangwei,Ma Xiquan,Sun Siyu,Pan Yuefei,Li Jianing,Ren Guocheng,Zhang Weihai

Abstract

In order to have a stronger bond with the surrounding bone, the bone prosthesis needs to have interconnecting pores for bone cells to grow and more importantly to avoid stress shielding. At the same time, human bones have different composition and structure of bone tissue in different parts of the body due to different physical factors of the person, so the elastic modulus of the bones that need to be supported and replaced are not the same. And additive manufacturing has the advantages of rapid, efficient and precise manufacturing of complex shapes and high-quality three-dimensional structures, which can manufacture porous scaffold bone prosthesis, and achieve more accurate mechanical property requirements by controlling the design parameters. To study the effect of design strut length and design strut cross-section diameter size on the elastic modulus of tetrahedral titanium alloy scaffold unit, and with the help of UG NX, several digital models of porous titanium alloy scaffolds were constructed with the strut length and the strut cross-section diameter size as the parameters of variation, and then the elastic modulus of each porous titanium alloy scaffold was measured by ANSYS Workbench 2022, and the elasticity modulus of each porous titanium alloy scaffold was further derived from the relationship between the strut length and strut cross-section diameter size and the porous titanium alloy scaffold. Then the elastic modulus of each porous titanium alloy bracket was measured by ANSYS Workbench 2022, and the mathematical model between the strut length, strut cross-section size and elastic modulus of the porous titanium alloy bracket was further derived. Then, ANSYS Workbench 2022 was used to measure the elastic modulus of each porous titanium alloy bracket and further derive the mathematical model between strut length, strut cross-section diameter size and elastic modulus of the porous titanium alloy bracket, with the help of which the elastic modulus of the porous titanium alloy bracket with specific diameters and strut lengths was finally deduced to validate the correctness of the above predicted mathematical model, and to make reasonable explanations and corrections for the deviations. explanation and correction of deviations. As a result, the rapid prototyping technology can be used to design the required porous titanium alloy bracket in a more detailed way.

Funder

Key R&D Program of Shandong Province

Publisher

EDP Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3