Study of the effect of SLM energy density on residual stress and microstructure of porous bone scaffolds in cubic structures

Author:

Zhang Sen,Xu ShuboORCID,Zheng Wei,Han Juanjuan

Abstract

In order to investigate the effect of energy density in selective laser melting (SLM) forming on the properties of porous bone scaffolds made of 316L stainless steel, the mechanism of different construction energy densities on the residual stress and microstructure of cubic porous bone scaffolds was investigated by combining experiments and finite element analysis. The results showed that many defects were formed in the scaffolds when too high or too low energy densities were used to form the porous bone scaffolds. In terms of microstructure, inappropriate energy densities caused some grains to appear coarse and dispersed, which directly led to a reduction in the corrosion resistance of the scaffolds. Most importantly, the stress and temperature field changes in the melt pool during the SLM forming process were obtained through finite element calculations and analysis, and it was found that the residual stress in the scaffolds was proportional to the energy density. After a comprehensive study of the finite element analysis results and experimental characterization, the optimum energy density for constructing cubic porous bone scaffolds with ideal defects and residual stress in the porous bone scaffolds was obtained.

Funder

Natural Science Foundation of Shandong Province

State Key Laboratory of Material Forming and Mould Technology Open Fund Project

National Natural Science Foundation of China

Publisher

EDP Sciences

Subject

Control and Optimization,Modeling and Simulation

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Laser powder bed fusion of NdFeB and influence of powder bed heating on density and magnetic properties;The International Journal of Advanced Manufacturing Technology;2024-04-29

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3