Abstract
Solid metallic hip implants have much higher stiffness than the femur bone, causing stress-shielding and subsequent implant loosening. The development of low-stiff implants using metallic porous structures has been reported in the literature. Ti6Al4V alloy is a commonly used biomaterial for hip implants. In this work, Body-Center-Cubic (BCC), Cubic, and Spherical porous structures of four different porosities (82%, 76%, 70%, and 67%) were investigated to establish the range of ideal porosities of Ti6Al4V porous structures that can match the stiffness of the femur bone. The effective mechanical properties have been determined through Finite Element Analysis (FEA) under uniaxial compressive displacement of 0.32 mm. FEA predictions were validated with the analytical calculations obtained using Gibson and Ashby method. The effective mechanical properties of 82%, 76%, 70%, and 67% porous BCC and Cubic structures were found to match the mechanical properties of cortical bone closely. They were also well comparable to the Gibson-Ashby method-based calculations. BCC and Cubic porous structures with 67–82% porosity can mimic the stiffness of the femur bone and are suitable for low-stiff hip implant applications.
Subject
Control and Optimization,Modeling and Simulation
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献