Finite element analysis of Ti6Al4V porous structures for low-stiff hip implant application

Author:

Rakesh PorikaORCID,Pal BidyutORCID

Abstract

Solid metallic hip implants have much higher stiffness than the femur bone, causing stress-shielding and subsequent implant loosening. The development of low-stiff implants using metallic porous structures has been reported in the literature. Ti6Al4V alloy is a commonly used biomaterial for hip implants. In this work, Body-Center-Cubic (BCC), Cubic, and Spherical porous structures of four different porosities (82%, 76%, 70%, and 67%) were investigated to establish the range of ideal porosities of Ti6Al4V porous structures that can match the stiffness of the femur bone. The effective mechanical properties have been determined through Finite Element Analysis (FEA) under uniaxial compressive displacement of 0.32 mm. FEA predictions were validated with the analytical calculations obtained using Gibson and Ashby method. The effective mechanical properties of 82%, 76%, 70%, and 67% porous BCC and Cubic structures were found to match the mechanical properties of cortical bone closely. They were also well comparable to the Gibson-Ashby method-based calculations. BCC and Cubic porous structures with 67–82% porosity can mimic the stiffness of the femur bone and are suitable for low-stiff hip implant applications.

Publisher

EDP Sciences

Subject

Control and Optimization,Modeling and Simulation

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3