Molecular characterization and protective efficacy of a new conserved hypothetical protein of Eimeria tenella

Author:

Zhao Huanzhi,Zhu Shunhai,Zhao Qiping,Huang Bing,Liu Guiling,Li Zhihang,Wang Lu,Dong Hui,Han Hongyu

Abstract

Eimeria tenella is an obligate intracellular parasite that actively invades cecal epithelial cells of chickens. This parasite encodes a genome of more than 8000 genes. However, more than 70% of the gene models for this species are currently annotated as hypothetical proteins. In this study, a conserved hypothetical protein gene of E. tenella, designated EtCHP18905, was cloned and identified, and its immune protective effects were evaluated. The open reading frame of EtCHP18905 was 1053bp and encoded a protein of 350 amino acids with a molecular weight of 38.7kDa. The recombinant EtCHP18905 protein (rEtCHP18905) was expressed in E. coli. Using western blot, the recombinant protein was successfully recognized by anti GST-Tag monoclonal antibody and anti-sporozoites protein rabbit serum. Real-time quantitative PCR analysis revealed that the EtCHP18905 mRNA levels were higher in sporozoites than in unsporulated oocysts, sporulated oocysts and second-generation merozoites. Western blot analysis showed that EtCHP18905 protein expression levels were lower in sporozoites than in other stages. Immunofluorescence analysis indicated that the EtCHP18905 protein was located on the surface of sporozoites and second-generation merozoites. Inhibition experiments showed that the ability of sporozoites to invade host cells was significantly decreased after treatment with the anti-rEtCHP18905 polyclonal antibody. Vaccination with rEtCHP18905 protein was able to significantly decrease mean lesion scores and oocyst outputs as compared to non-vaccinated controls. The results suggest that the rEtCHP18905 protein can induce partial immune protection against infection with E. tenella and could be an effective candidate for the development of new vaccines.

Publisher

EDP Sciences

Subject

Infectious Diseases,Animal Science and Zoology,Veterinary (miscalleneous),Insect Science,Parasitology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3