Experimental evidence that immune trypanolysis using the LiTat 1.3 and LiTat 1.5 variant antigen types is not specific to Trypanosoma brucei gambiense in pigs

Author:

Ilboudo Kadidiata,Hounyeme Robert Eustache,Kabore Jacques,Boulangé Alain,Gimonneau Geoffrey,Salou Ernest,Belem Adrien Gaston Marie,Lejon Veerle,Compaoré Charlie Franck Alfred,Bucheton Bruno,Koffi Mathurin,Solano Philippe,Berthier David,Thevenon Sophie,Jamonneau VincentORCID

Abstract

In the context of the human African trypanosomiasis elimination process, reliable and accurate diagnostic tools are crucial for exploring the role of a potential animal reservoir of Trypanosoma brucei gambiense. The immune trypanolysis test (TL) using the variant antigen types (VAT) LiTat 1.3 and LiTat 1.5, described as a specific serological method to detect people infected by T. b. gambiense, seems to be a promising tool. However, its specificity was recently questioned during field animal surveys. The present study evaluates the performance of TL during experimental T. b. brucei infection in pigs. Eight infected pigs and four uninfected pigs were followed up with blood and plasma collection. Blood was used for parasitological investigation. TL was performed on the plasma with the LiTat 1.3, LiTat 1.5 and LiTat 1.6 VATs. All control pigs remained negative to parasitological investigation and TL. Trypanosomes were detected in all the infected pigs and the first detection was between 10 and 14 days post infection (dpi). TL results showed that infected pigs developed antibodies against the three VATs. The first antibody detections by TL occurred between 14 and 21 dpi for antibodies directed against LiTat 1.6, 21 and 168 dpi for antibodies directed against LiTat 1.5 and 70, and 182 dpi for antibodies directed against LiTat 1.3. This study highlights for the first time that TL using LiTat 1.3 and LiTat 1.5 VATs is not specific to T. b. gambiense. Development of specific diagnostic tools for the detection of T. b. gambiense infections in animals, especially in pigs, is still needed.

Funder

Bill and Melinda Gates Foundation

Publisher

EDP Sciences

Subject

Infectious Diseases,Animal Science and Zoology,Veterinary (miscellaneous),Insect Science,Parasitology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3