Further investigation of the characteristics and biological function of Eimeria tenella apical membrane antigen 1

Author:

Wang Qingjie,Zhao Qiping,Zhu Shunhai,Huang Bing,Yu Shuilan,Liang Shanshan,Wang Haixia,Zhao Huanzhi,Han Hongyu,Dong Hui

Abstract

Apical membrane antigen 1 (AMA1) is a type I integral membrane protein that is highly conserved in apicomplexan parasites. Previous studies have shown that Eimeria tenella AMA1 (EtAMA1) is critical for sporozoite invasion of host cells. Here, we show that EtAMA1 is a microneme protein secreted by sporozoites, confirming previous results. Individual and combined treatment with antibodies of EtAMA1 and its interacting proteins, E. tenella rhoptry neck protein 2 (EtRON2) and Eimeria-specific protein (EtESP), elicited significant anti-invasion effects on the parasite in a concentration-dependent manner. The overexpression of EtAMA1 in DF-1 cells showed a significant increase of sporozoite invasion. Isobaric tags for relative and absolute quantitation (iTRAQ) coupled with LC-MS/MS were used to screen differentially expressed proteins (DEPs) in DF-1 cells transiently transfected with EtAMA1. In total, 3953 distinct nonredundant proteins were identified and 163 of these were found to be differentially expressed, including 91 upregulated proteins and 72 downregulated proteins. The DEPs were mainly localized within the cytoplasm and were involved in protein binding and poly(A)-RNA binding. KEEG analyses suggested that the key pathways that the DEPs belonged to included melanogenesis, spliceosomes, tight junctions, and the FoxO and MAPK signaling pathways. The data in this study not only provide a comprehensive dataset for the overall protein changes caused by EtAMA1 expression, but also shed light on EtAMA1’s potential molecular mechanisms during Eimeria infections.

Publisher

EDP Sciences

Subject

Infectious Diseases,Animal Science and Zoology,Veterinary (miscellaneous),Insect Science,Parasitology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3