Environmental pollution detection: A novel chirped spectral modulation algorithm for a more accurate monitoring of gas pollutants in the atmosphere

Author:

Shalaby MohamedORCID,Alorifi Fawzi S.

Abstract

This work presents a new technique based on modulating the IR absorbance of each substance in a mixture in a chirped manner to reduce the effect of their partial spectral absorption overlap on the accuracy of determining their concentrations. This chirped spectral modulation CSM algorithm can deal with mixtures containing unknown substances rather than the substances whose concentrations are aimed. This novel algorithm, when compared to existing pattern recognition techniques, makes it easy to analyze the constituents of a mixture with high accuracy in the presence of traces of unknown components. It is found that the new algorithm can detect the presence of gas pollutants such as sulfur dioxide, carbon monoxide, carbon dioxide, nitrogen dioxide in a sample containing many other unknown polluting substances. This new algorithm is tested on air samples composed of predetermined percentages of air constituents and the results of calculations are compared with those of classical least squares CLS pattern recognition algorithm. The comparison showed that the new algorithm can detect down to very small traces of harmful gases such as NO2, and SO2, at least one order of magnitude less than those detected by the CLS approach. Finally, the new algorithm is used to examine collected air samples from an industrial zone, and in the middle and at the exit of a road tunnel in Riyadh area which showed that the percentages of sulfur dioxide, nitrogen dioxide, and carbon monoxide are well below the safe levels.

Funder

Deanship of Scientific Research, Imam Mohammad Ibn Saud Islamic University

Publisher

EDP Sciences

Subject

Atomic and Molecular Physics, and Optics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3