Intelligent self calibration tool for adaptive few-mode fiber multiplexers using multiplane light conversion

Author:

Pohle Dennis,Barbosa Fabio A.,Ferreira Filipe M.,Czarske Jürgen,Rothe Stefan

Abstract

Space division multiplexing (SDM) is promising to enhance capacity limits of optical networks. Among implementation options, few-mode fibres (FMFs) offer high efficiency gains in terms of integratability and throughput per volume. However, to achieve low insertion loss and low crosstalk, the beam launching should match the fiber modes precisely. We propose an all-optical data-driven technique based on multiplane light conversion (MPLC) and neural networks (NNs). By using a phase-only spatial light modulator (SLM), spatially separated input beams are transformed independently to coaxial output modes. Compared to conventional offline calculation of SLM phase masks, we employ an intelligent two-stage approach that considers knowledge of the experimental environment significantly reducing misalignment. First, a single-layer NN called Model-NN learns the beam propagation through the setup and provides a digital twin of the apparatus. Second, another single-layer NN called Actor-NN controls the model. As a result, SLM phase masks are predicted and employed in the experiment to shape an input beam to a target output. We show results on a single-passage configuration with intensity-only shaping. We achieve a correlation between experiment and network prediction of 0.65. Using programmable optical elements, our method allows the implementation of aberration correction and distortion compensation techniques, which enables secure high-capacity long-reach FMF-based communication systems by adaptive mode multiplexing devices.

Funder

Deutsche Forschungsgemeinschaft

Bundesministerium für Bildung und Forschung

UK Research and Innovation

Publisher

EDP Sciences

Subject

Atomic and Molecular Physics, and Optics

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3