PARUPM: A simulation code for passive auto-catalytic recombiners

Author:

Domínguez-Bugarín Araceli,Jiménez Miguel-ÁngelORCID,Reinecke Ernst-ArndtORCID,Jiménez GonzaloORCID

Abstract

In the event of a severe accident with core damage in a water-cooled nuclear reactor, combustible gases (H2 and possibly CO) get released into the containment atmosphere. An uncontrolled combustion of a large cloud with a high concentration of combustible gases could lead to a threat to the containment integrity if concentrations within their flammability limits are reached. To mitigate this containment failure risk, many countries have proceeded to install passive auto-catalytic recombiners (PARs) inside containment buildings. These devices represent a passive strategy for controlling combustible gases, since they can convert H2 and CO into H2O and CO2, respectively. In this work, the code PARUPM developed by the Department of Energy Engineering at the UPM is described. This work is part of the AMHYCO project (Euratom 2014–2018, GA No. 945057) aiming at improving experimental knowledge and simulation capabilities for the H2/CO combustion risk management in severe accidents (SAs). Thus, enhancing the available knowledge related to PAR operational performance is one key point of the project. The PARUPM code includes a physicochemical model developed for the simulation of surface chemistry, and heat and species mass transfer between the catalytic sheets and gaseous mixtures of hydrogen, carbon monoxide, air, steam and carbon dioxide. This model involves a simplified Deutschmann reaction scheme for the surface combustion of methane, and the Elenbaas analysis for buoyancy-induced heat transfer between parallel plates. Mass transfer is considered using the heat and mass transfer analogy. By simulating the recombination reactions of H2 and CO inside the catalytic section of the PAR, PARUPM allows studying the effect of CO on transients related to accidents that advance towards the ex-vessel phase. A thorough analysis of the code capabilities by comparing the numerical results with experimental data obtained from the REKO-3 facility has been executed. This analysis allows for establishing the ranges in which the code is validated and to further expands the capabilities of the simulation code which will lead to its coupling with thermal-hydraulic codes in future steps of the project.

Funder

European Union’s EURATOM Horizon 2020 research and innovation programme

Publisher

EDP Sciences

Subject

General Medicine

Reference14 articles.

1. Arnould F., State of the Art of Passive Autocatalytic Recombiner (PARSOAR), 2003

2. Studies on innovative hydrogen recombiners as safety devices in the containments of light water reactors

3. Jiménez M.Á., Recombinación del hidrógeno en dispositivos autocatalíticos pasivos y sus implicaciones en la seguridad de las centrales nucleares (2007), [Online] http://oa.upm.es/718/

4. Jiménez G. et al., AMHYCO project – towards advanced accident guidelines for hydrogen safety in nuclear power plants, in International Conference on Hydrogen Safety (Institutation of Gas Engineers and Managers, Oct. 2020)

5. Carcassi M. and Bazzicchi A., Empirical correlations for PAR performances, Universitá di Pisa, CONT-HYMI (97)-D007, 1997

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3