NMB4.0: development of integrated nuclear fuel cycle simulator from the front to back-end

Author:

Okamura TomohiroORCID,Katano RyotaORCID,Oizumi AkitoORCID,Nishihara KenjiORCID,Nakase Masahiko,Asano Hidekazu,Takeshita Kenji

Abstract

Nuclear Material Balance code version 4.0 (NMB4.0) has been developed through collaborative R&D between TokyoTech&JAEA. Conventional nuclear fuel cycle simulation codes mainly analyze actinides and are specialized for front-end mass balance analysis. However, quantitative back-end simulation has recently become necessary for considering R&D strategies and sustainable nuclear energy utilization. Therefore, NMB4.0 was developed to realize the integrated nuclear fuel cycle simulation from front- to back-end. There are three technical features in NMB4.0: 179 nuclides are tracked, more than any other code, throughout the nuclear fuel cycle; the Okamura explicit method is implemented, which contributes to reducing the numerical cost while maintaining the accuracy of depletion calculations on nuclides with a shorter half-life; and flexibility of back-end simulation is achieved. The main objective of this paper is to show the newly developed functions, made for integrated back-end simulation, and verify NMB4.0 through a benchmark study to show the computational performance.

Publisher

EDP Sciences

Reference29 articles.

1. Evaluation of the technical options of radioactive waste management for utilization of MOX fuel: thermal impact of minor actinide separation with geological disposal of high-level waste

2. Effect of Cs and Sr separation on occupied area reduction in current nuclear energy system and its evaluation by CAERA index

3. International Atomic Energy Agency, Framework for Assessing Dynamic Nuclear Energy Systems for Sustainability: Final Report of the INPRO Collaborative Project GAINS, IAEA Nuclear Energy Series No. NP-T-1.14, 2013

4. Standardized verification of fuel cycle modeling

5. Nuclear Energy Agency, in Benchmark study on nuclear fuel cycle transition scenarios analysis codes, NEA/NSC/WPFC/DOC (2012) vol. 16

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3