Heating schemes and process parameters of induction heating of aluminium sheets for hot stamping

Author:

Tian Yankang,Wang Libo,Anyasodor Gerald,Xu Zhenhai,Qin Yi

Abstract

Induction heating is one of the most popular metal heating technologies due to its high heating rate and high energy efficiency. This method is suitable for heating workpieces/blanks in different shapes, sizes and materials. Although induction heating of metal sheets has already been investigated by various research organizations and industrial companies, information concerning the induction heating of aluminium blanks is limited. Considering that hot stamping of aluminium sheets for automotive and aerospace applications is currently attracting a lot of attentions, it is timely important to gain more understanding on this technology by conducting in-depth investigations. Especially, investigations are required to address issues relating to the uneven temperature distributions developed in the metal sheets when they are heated, so that optimum designs could be obtained to improve the technology and its applications. This paper presents an in-depth analysis conducted recently for the investigation into heating schemes and process parameters in induction heating of aluminium sheets, mainly using 3D FE simulations, based on a general experimental validation. Different material, coil geometric and power-setting factors were considered during the modelling and analysis to examine their effects on the heating efficiency and developed temperature profiles. It was revealed from the simulations that design features of the induction coils affect the uniformity of the developed temperatures in the metal sheets. It is shown that an optimised combination of the coil design and the power setting could help to achieve higher heating rates, at the same time, also to achieve higher temperature-distribution uniformity. At the end of this paper, a discussion of practical factors that affect applications of induction heating of aluminium sheets for hot stamping applications is presented.

Publisher

EDP Sciences

Subject

Industrial and Manufacturing Engineering

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3