Abstract
In recent years, metal matrix composite (MMCs) have been receiving worldwide attention on account of their superior strength-to-weight ratio and stiffness. Among the several classes of composite materials, Aluminium matrix ceramic reinforcement composites have attracted increasing attention due to their unique properties such as better specific strength, specific stiffness, wear resistance, excellent corrosion resistance, high elastic modulus and light weight. The aim of the present investigation is to optimize the dry sliding wear parameters of Aluminum LM25 matrix reinforced with silicon carbide (SiC) (5 wt.%) and Copper (Cu) (3 wt.%) using Taguchi based grey relational analysis. In this work, the composite is prepared using stir casting method. The specimens are prepared according to ASTM standard. Using pin-on-disc apparatus, wear tests are conducted as per Taguchi's L9 orthogonal array and optimum wear parameters are identified with an objective to minimise the wear rate and coefficient of friction based on the grey relational grade. The effect of parameters on the wear rate and coefficient of friction was determined using Analysis of variance (ANOVA). Finally, the experimental results were verified using confirmation tests and the SEM analysis was carried out to study the wear mechanism.
Subject
Industrial and Manufacturing Engineering
Cited by
17 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献