In situ alloying of Ti10Mo fused tracks and layers via laser powder bed fusion

Author:

Dzogbewu Thywill CephasORCID,du Preez Willie BouwerORCID

Abstract

Optimum process parameters for manufacturing a Ti10Mo alloy for biomedical applications via the laser powder bed fusion (LPBF) process were determined. Fused tracks were produced over a wide range of laser powers and scanning speeds, and layers were fused at varied hatch distances. The samples were analysed for continuity of the fused tracks, melting and distribution of the Mo powder particles in the Ti10Mo alloy layers, surface roughness, homogeneity of Mo in the alloy matrix and microhardness. The analysis revealed that the Mo powder particles melted completely in the alloy matrix with only pockets of Mo concentrations, mostly at the peripheries of the fused tracks due to the pushing effect. Complete melting of Mo in the Ti10Mo alloy matrix was due to the small size (1 μm) of the Mo powder particles used in the current experiment. The addition of Mo enhanced the wetting of the powder bed and prevented a pronounced balling effect. From this study, the parameter sets 150 W, 0.5 m/s and 200 W, 1.0 m/s both at a hatch distance of 80 μm, were obtained as the optimum process parameters. However, the Mo concentrations at the peripheries of the molten pool indicated that further research was required before a ‘completely’ homogenous sample could be manufactured via the LPBF process using elemental powder blends.

Publisher

EDP Sciences

Subject

Industrial and Manufacturing Engineering

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3