Nanoparticulate reinforced composites and their application to additively manufactured TI6AL4V for use in the aerospace sector

Author:

Mashabela Mpho,Maringa MainaORCID,Dzogbewu ThywillORCID

Abstract

Metal matrix composites possess good mechanical properties at high temperatures making them good candidates for components that operate in conditions of high temperatures where they have to withstand static creep and cyclic fatigue loads. The mechanical properties of Ti6Al4V including hardness, strength, modulus of elasticity, and wear resistance can be enhanced with nano particulates to obtain lighter and stronger materials that can function at elevated temperatures. This paper starts with a brief background on composite materials and then turns to analysis of carbon nanotubes, titanium carbide, silicon carbide, titanium boride, titanium diboride, and titanium nitride nano particulate materials as candidates for the reinforcement for Ti6Al4V to form composites for aerospace applications. Based on a comparison of their physical properties of melting point, coefficient of thermal expansion, density and mechanical properties of strength, Young's modulus and hardness all obtained from literature, the paper narrows down on multiwalled carbon nanotubes and titanium diboride as the preferred nano composites for this use. Presently, experimental work is under way to determine optimum process parameters for additively built carbon nanotube/Ti6Al4V composites that will be used to build three-dimensional specimens for testing to determine their mechanical properties. This is expected to clarify the value of incorporating the carbon nanotubes in the Ti6Al4V matrix with respect to selected mechanical properties. Future work is envisaged on additively build titanium diboride/Ti6Al4V composites to the same end and in order to determine which of the two nano particles is best in enhancing the mechanical properties of Ti6Al4V.

Funder

CPAM

Publisher

EDP Sciences

Subject

Industrial and Manufacturing Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3